If it's not what You are looking for type in the equation solver your own equation and let us solve it.
56+2x-x^2=7
We move all terms to the left:
56+2x-x^2-(7)=0
We add all the numbers together, and all the variables
-1x^2+2x+49=0
a = -1; b = 2; c = +49;
Δ = b2-4ac
Δ = 22-4·(-1)·49
Δ = 200
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{200}=\sqrt{100*2}=\sqrt{100}*\sqrt{2}=10\sqrt{2}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(2)-10\sqrt{2}}{2*-1}=\frac{-2-10\sqrt{2}}{-2} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(2)+10\sqrt{2}}{2*-1}=\frac{-2+10\sqrt{2}}{-2} $
| (1.165+0.7683+0.88+1.825)/6=x | | 3×(x+-7)=12 | | 1x^-3=247 | | 8x+2=7× | | (x+1)^0.5-(x-1)^0.5-(4x-1)^0.5=0 | | (1/45)*100=x | | x3+7=5 | | -6(14g-12)=-9-3g | | 4x-4x2=0 | | 5k^2+7k-3=0 | | 1,5x2-0,5x=0 | | 7x+3=9x-3-2× | | 3x2+4x=0 | | (2/45)*100=x | | x4+3x-22=0 | | 2.733*0.25=x | | 258/45=x | | (258/45)*100=x | | 3x2+5x=0 | | (6+z)/(10)=-2 | | 23.3*0.05=x | | 7x−2=26 | | 12x-43-10=83 | | (0.533*100)-30=x | | 2.8w+19.83=-16.5w+17.1w-17.57 | | ((24/45)*100)=x | | (n+3)/(8)=-4 | | 200-200x+x^2=0 | | 8•x=10 | | -18.01+0.4j=-3.52+2.5j | | -2(8-11k)=4(k-4)+7k | | 3x-5(x-4)=-8+2x+20 |